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Chapter 1

Introduction

1.1 Disclaimer

This script is intended to be a short introduction to the field of queueing theory, serving as a mod-
ule within the lecture “Leistungsbewertung von Kommunikationsnetzen” of Prof. Adam Wolisz
from the Telecommunication Networks Group at Technical University Berlin. It covers the most im-
portant queueing systems with a single service center, for queueing networks only some basics are
mentioned. This script is neither complete nor error free. However, we are interested in improving
this script and we would appreciate any kind of (constructive) comment or “bug reports”. Please
send all suggestions to awillig@ft.ee.tu-berlin.de.

In this script most of the mathematical details are omitted, instead often “intuitive” (or better:
prosaic) arguments are used. Most of the formulas are only used during a derivation and have no
numbers, however, the important formulas are numbered. The author was too lazy to annotate all
statements with a reference, since most of the material can be found in the standard literature.

1.2 Scope of Queueing Theory

Queueing Theory is mainly seen as a branch of applied probability theory. Its applications are in
different fields, e.g. communication networks, computer systems, machine plants and so forth. For
this area there exists a huge body of publications, a list of introductory or more advanced texts on
queueing theory is found in the bibliography. Some good introductory books are [9], [2], [11], [16].
The subject of queueing theory can be described as follows: consider a service center and a popu-
lation of customers, which at some times enter the service center in order to obtain service. It is often
the case that the service center can only serve a limited number of customers'. If a new customer ar-
rives and the service is exhausted, he enters a waiting line and waits until the service facility becomes
available. So we can identify three main elements of a service center: a population of customers, the
service facility and the waiting line. Also within the scope of queueing theory is the case where sev-
eral service centers are arranged in a network and a single customer can walk through this network

at a specific path, visiting several service centers.

ISince queueing theory is applied in different fields, also the terms job and task are often used instead customer. The service

center is often named processor or machine



As a simple example of a service center consider an airline counter: passengers are expected to
check in, before they can enter the plane. The check-in is usually done by a single employee, however,
there are often multiple passengers. A newly arriving and friendly passenger proceeds directly to
the end of the queue, if the service facility (the employee) is busy. This corresponds to a FIFO service
(first in, first out).

Some examples of the use of queueing theory in networking are the dimensioning of buffers in
routers or multiplexers, determining the number of trunks in a central office in POTS, calculating
end-to-end throughput in networks and so forth.

Queueing Theory tries to answer questions like e.g. the mean waiting time in the queue, the
mean system response time (waiting time in the queue plus service times), mean utilization of the
service facility, distribution of the number of customers in the queue, distribution of the number
of customers in the system and so forth. These questions are mainly investigated in a stochastic
scenario, where e.g. the interarrival times of the customers or the service times are assumed to be
random.

The study of queueing theory requires some background in probability theory. Two modern

introductory texts are [11] and [13], two really nice “classic” books are [7], [6].

1.3 Basic Model and Notation

A basic model of a service center is shown in figure 1.1. The customers arrive to the service center in
arandom fashion. The service facility can have one or several servers, each server capable of serving
one customer at a time (with one exception), the service times needed for every customers are also

modeled as random variables. Throughout this script we make the following assumptions:

e The customer population is of infinite size, the n-th customer C,, arrives at time 7,,. The in-
terarrival time ¢,, between two customers is defined as ¢,, := 7,, — 7,,_1. We assume that the
interarrival times ¢,, are iid random variables, i.e. they are independent from each other and all
t,, are drawn from the same distribution with the distribution function

A(t) == Prft, < 1]

dA(D)
dt

and the probability density function (pdf) a(t) :=

¢ The service times z,, for each customer C,, are also iid random variables with the common

distribution function B(t) and the respective pdf b(¢).

Queueing systems may not only differ in their distributions of the interarrival- and service times,
but also in the number of servers, the size of the waiting line (infinite or finite), the service discipline

and so forth. Some common service disciplines are:
FIFO: (First in, First out): a customer that finds the service center busy goes to the end of the queue.

LIFO: (Last in, First out): a customer that finds the service center busy proceeds immediately to the

head of the queue. She will be served next, given that no further customers arrive.

Random Service: the customers in the queue are served in random order



Round Robin: every customer gets a time slice. If her service is not completed, she will re-enter the

queue.

Priority Disciplines: every customer has a (static or dynamic) priority, the server selects always the
customers with the highest priority. This scheme can use preemption or not.

The Kendall Notation is used for a short characterization of queueing systems. A queueing system
description looks as follows:

A/B/mJN — 8

where A denotes the distribution of the interarrival time, B denotes the distribution of the service
times, m denotes the number of servers, N denotes the maximum size of the waiting line in the finite
case (if N = oo then this letter is omitted) and the optional S denotes the service discipline used
(FIFO, LIFO and so forth). If S is omitted the service discipline is always FIFO. For 4 and B the

following abbreviations are very common:

e M (Markov): this denotes the exponential distribution with A(t) = 1 — e * and a(t) = e,
where A > 0 is a parameter. The name M stems from the fact that the exponential distribution

is the only continuous distribution with the markov property;, i.e. it is memoryless.

e D (Deterministic): all values from a deterministic “distribution” are constant, i.e. have the same

value

e F; (Erlang-k): Erlangian Distribution with & phases (k > 1). For the Erlang-k distribution we
have

k-1 ;
_ ke N (Rpt)?

=0
where i > 0 is a parameter. This distribution is popular for modeling telephone call arrivals at

a central office

e M}, (Hyper-k): Hyperexponential distribution with & phases. Here we have
k
At) = qu(l —e Mt
j=1

where p; > 0,¢; > 0,i € {1..k} are parameters and furthermore Zle ¢; = 1 must hold.

e (@ (General): general distribution, not further specified. In most cases at least the mean and the

variance are known.

The most simple queueing system, the M/M/1 system (with FIFO service) can then be described as
follows: we have a single server, an infinite waiting line, the customer interarrival times are iid and
exponentially distributed with some parameter A and the customer service times are also iid and
exponentially distributed with some parameter .

We are mainly interested in steady state solutions, i.e. where the system after a long running time

tends to reach a stable state, e.g. where the distribution of customers in the system does not change



Waiting Line (Queue)

Service Facilities

Customer Population

Figure 1.1: Model of a Service Center

(limiting distribution). This is well to be distinguished from transient solutions, where the short-term
system response to different events is investigated (e.g. a batch arrival).

A general trend in queueing theory is the following: if both interarrival times and service times
are exponentially distributed (markovian), it is easy to calculate any quantity of interest of the queue-
ing system. If one distribution is not markovian but the other is, things are getting harder. For the

case of G/G/1 queues one cannot do much; even the mean waiting times are not known.

1.4 Little’s Law

Little’s law is a general result holding even for G/G/1-Queues; it also holds with other service dis-
ciplines than FIFO. It establishes a relationship between the average number of customers in the
system, the mean arrival rate and the mean customer response time (time between entering and
leaving the system after getting service) in the steady state. The following derivation is from [11,
chapter 7].

Denote N (t) for the number of customers in the system at time ¢, A(t) for the number of customer
arrivals to the system in the time interval [0, ¢], D(t) for the number of customer departures from the
system during [0, {] and let T; denote the response time of the i-th customer. Then clearly N(t) =
A(t) — D(t) holds (assuming the system is empty at ¢ = 0). A sample path for A(¢) and D(¢) is shown
in the upper part of figure 1.2 (Please be aware that customers do not necessarily leave the system in
the same sequence they entered it). The average number of arrivals in the time interval [0, ¢] is given by
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Figure 1.2: Little’s Law

and we assume that
A= lim A(t)
t—o0
exists and is finite. The value A can be seen as the long term arrival rate. Furthermore the time

average of the number of customers in the system is given by

N(t) := %/0 N(u)du

and we assume that N := lim, ,,, N(t) exists and is finite. Similarly we define the time customer

average response time

) 1 A(t)
T(t) := ¥T0) Z T

Now consider a graph where A(t) and D(¢) are shown simultaneously (see upper part of figure
1.2). Since always A(¢) > D(t) holds we have N (¢) > 0 and the area between the two curves is given

by

F(t) ::/0 (A(u)—D(u))duz/O N(u)du



We can take an alternative view to F'(¢): it represents the sum of all customer response times

which are active up to time ¢:

A(t)
> T
i=1

with the minor error that this expression takes also the full response times of the customers into
account that are in the system at time ¢ and which are present in the system up to a time # > ¢ (see
lower part of figure 1.2, where for each customer the bar corresponds to its system response time).
This “overlap” is denoted E(¢) and now we can write

We assume that E(t) is almost relatively small.

Now we can equate both expressions for F(¢):

t At)
/ N(u)du = Z T; — E(t)
70 i=1

After division by 1/t and using 1 = % we arrive at:
A(t)
1t Aty 1 E(1)
Z N -\ - T - 2\
t /0 (u)du t A(t) Z ! t

Now we use the above definitions, go to the limit and use that liny_, « EM) _ g and finally arrive at

t
Little’s Law:
N =T (1.1)

An alternative form of Little’s Law arises when we assume that N = E[N] holds (with N being a
steady state random variable denoting the number of customers in the system) and also7 = E[T],

then we have
E[N] = AE[T] (1.2)

A very similar form of Little’s Law relates the mean number of customers in the queue (not in the
system!!!), denoted as N, (the underlying random variable for the number of customers in the queue
is denoted as N,) and the mean waiting time W, i.e. the time between arrival of a customer and the

start of its service. In this case Little’s Law is

N, =AW (1.3)

or in mean value representation



Chapter 2

Markovian Systems

The common characteristic of all markovian systems is that all interesting distributions, namely the
distribution of the interarrival times and the distribution of the service times are exponential dis-
tributions and thus exhibit the markov (memoryless) property. From this property we have two

important conclusions:

e The state of the system can be summarized in a single variable, namely the number of cus-
tomers in the system. (If the service time distribution is not memoryless, this is not longer true,
since not only the number of customers in the system is needed, but also the remaining service

time of the customer in service.)

e Markovian systems can be directly mapped to a continuous time markov chain (CTMC) which

can then be solved.

In this chapter we will often proceed as follows: deriving a CTMC and solve it by inspection or

simple numerical techniques.

2.1 The M/M/1-Queue

The M/M/1-Queue has iid interarrival times, which are exponentially distributed with parameter
A and also iid service times with exponential distribution with parameter ;. The system has only a
single server and uses the FIFO service discipline. The waiting line is of infinite size. This section is
mainly based on [9, chapter 3].

It is easy to find the underlying markov chain. As the system state we use the number of cus-
tomers in the system. The M/M/1 system is a pure birth-/death system, where at any point in time
at most one event occurs, with an event either being the arrival of a new customer or the completion
of a customer’s service. What makes the M/M/1 system really simple is that the arrival rate and the
service rate are not state-dependent. The state-transition-rate diagram of the underlying CTMC is
shown in figure 2.1.



Figure 2.1: CTMC for the M/M/1 queue

2.1.1 Steady-State Probabilities

We denote the steady state probability that the system is in state k¥ (k € N) by pg, which is defined by

pr = lim Py(¢)

t—oc

where P (t) denotes the (time-dependent) probability that there are & customers in the system at time
t. Please note that the steady state probability p; does not dependent on ¢. We focus on a fixed state
k and look at the flows into the state and out of the state. The state & can be reached from state & — 1
and from state k& + 1 with the respective rates AP, (¢) (the system is with probability P, (¢) in the
state k — 1 at time ¢ and goes with the rate A from the predecessor state k — 1 to state k) and pFy 1 ()
(the same from state k + 1). The total flow into the state k is then simply AF._1(¢) + pPi41(¢). The
state k is left with the rate AP (¢) to the state k + 1 and with the rate p P (¢) to the state k — 1 (for k = 0
there is only a flow coming from or going to state 1). The total flow out of that state is then given by
AP (t) + nPy (1) The total rate of change of the flow into state k is then given by the difference of the
flow into that state and the flow out of that state:

APy (1)
dt

= (APp—1(t) + pPri1 (1)) — (AP (1) + nPr (1)),

, however, in the limit (f — oc) we require

dP(t)
at

so we arrive at the following steady-state flow equations:

= upi — Apo
= Apo + pp2 — Ap1 — pp1

o o o o o
I

These equations can be recursively solved in dependence of py:

AN K
Pr = (—> Po
I

Furthermore, since the pj, are probabilities, the normalization condition
o0
St
k=0

10



Figure 2.2: CTMC for the M/M/1 queue

says that

%] 0 A k oc A k 1
1—po+2pk—po+2po<—> = po Z(—) =P
k=1 k=1

7
which gives

A
pozlfﬁzzlfp (2.1)

To summarize the results, the steady state probabilities of the M/M/1 markov chain are given by

A
o = 1_; (2.2)

)

Obviously, in order for py to exist it is required that A < p, otherwise the series will diverge. This is

Pk

the stability condition for the M/M/1 system. It makes also sense intuitively: when more customers
arrive than the system can serve, the queue size goes to infinity.

A second derivation making use of the flow approach is the following: in the steady state we
can draw a line into the CTMC as in figure 2.2 and we argue, that in the steady state the following
principle holds: the flow from the left side to the right side equals the flow from the right side to the
left side. Transforming this into flow equations yields:

Apop = up:
Apr = ppe
ADk—1 = Pk

This approach can be solved using the same techniques as above.
The just outlined method of deriving a CTMC and solving the flow equations for the steady state
probabilities can be used for most markovian systems.

11
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Figure 2.3: Mean Number of Customers vs. Utilization

2.1.2 Some Performance Measures
Utilization

The utilization gives the fraction of time that the server is busy. In the M/M/1 case this is simply
the complementary event to the case where the system is empty. The utilization can be seen as the

steady state probability that the system is not empty at any time in the steady state, thus

Utilization := 1 —pg = p (2.4)

Mean number of customers in the system

The mean number of customers in the system is given by

E[N]="kpi = po (ka’“) =1 —p)(l_”p)2 = (2.5)
k=0 k=0

where we have used the summation

N

hok = T
2= Ty

for |z| < 1
The mean number of customers in the system for varying utilizations is shown in figure 2.3. As
can be seen N grows to infinity as p — 1, thus for higher utilizations the system tends to get unstable.

This trend is especially observable for utilizations of 70 % or more.

12



Mean Delay
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Figure 2.4: Mean Delay vs. Utilization

Mean Response Time

The mean response time 7' is the mean time a customer spends in the system, i.e. waiting in the

queue and being serviced. We simply apply Little’s law to find

N 1 1

p=N_tn _ 1 (2.6)
A 1—p pu—2A

For the case of y = 1 the mean response time (mean delay) of a customer is shown in figure 2.4

(for 4 = 1). This curve shows a behaviour similar to the one for the mean number of customers in

the system.

Tail Probabilities

In applications often the following question arises: we assume that we have an M/M/1 system,
however, we need to restrict the number of customers in the system to a finite quantity. If a cus-
tomer arrives at a full system, it is lost. We want to determine the size of the waiting line that is
required to lose customers only with a small probability. As an example consider e.g. a router for
which the buffer space is finite and packets should be lost with probability 107¢. In principle this
is a M/M/1/N queue, however, we use an M/M/1 queue (with infinite waiting room) as an ap-
proximation. We are now interested in the probability that the system has k or more customers (the
probability Pr[N > k] is called a tail probability) and thus would lose a customer in reality. We have
k k+1

1_
Pr[N>k]:1—Pr[N§k}zl—Zp,,zl—poﬁ:pkH 2.7)
v=0

13



Figure 2.5: CTMC for the M/M/m queue

2.2 The M/M/m-Queue

The M/M/m-Queue (m > 1) has the same interarrival time and service time distributions as the
M/M/1 queue, however, there are m servers in the system and the waiting line is infinitely long. As
in the M/M/1 case a complete description of the system state is given by the number of customers
in the system (due to the memoryless property). The state-transition-rate diagram of the underlying
CTMC is shown in figure 2.5. The M/M/m system is also a pure birth-death system.

2.2.1 Steady-State Probabilities

Using the above sketched technique of evaluating the flow equations together with the well-known

geometric summation yields the following steady state probabilities:

po = lmz (m]/fp!)k n ((m£!)m> (1;)1] (2.8)

k=0
(mp)*  k<m
[ Popkﬁ . = (2.9)
Po m‘ : k >m

with p = 2 and clearly assuming that p < 1.

2.2.2 Some Performance Measures
Mean number of customers in the system

The mean number of customers in the system is given by

e}
N (mp)™  po
N =FE[N]|=)» kpi= 2.10
[N] ;;:o PSP e (2.10)
The mean response time again can be evaluated simply using Little’s formula.

For the case of M=10 we show the mean number of customers in the system for varying p in figure
2.6.

Queueing Probability

We want to evaluate the probability that an arriving customer must enter the waiting line because
there is currently no server available. This is often used in telephony and denotes the probability
that a newly arriving call at a central office will get no trunk, given that the interarrival times and

service times (call durations) are exponentially distributed (in “real life” it is not so easy to justify

14
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Figure 2.6: Mean Number of Customers in the system for the M/M/10-Queue

this assumption). This probability can be calculated as follows:

T N N T ) (75
Pr[Queueing] :kg;npk = k;npo n;f! mk—m { o (,(nkpl)k;)(((nlﬁn)) (ﬁ)} (2.11)

and is often denoted as Erlangs C Formula, abbreviated with C'(m, p)

2.3 The M/M/1/K-Queue

The M/M/1/K-Queue has exponential interarrival time and service time distributions, each with
the respective parameters A and p. The customers are served in FIFO-Order, there is a single server
but the system can only hold up to K customers. If a new customer arrives and there are already K
customers in the system the new customer is considered lost, i.e. it drops from the system and never
comes back. This is often referred to as blocking. This behaviour is necessary, since otherwise (e.g.
when the customer is waiting outside until there is a free place) the arrival process will be no longer
markovian. As in the M/M/1 case a complete description of the system state is given by the number
of customers in the system (due to the memoryless property). The state-transition-rate diagram of the
underlying CTMC is shown in figure 2.7. The M/M/1/K system is also a pure birth-death system.
This system is better suited to approximate “real systems” (like e.g. routers) since buffer space is

always finite.

2.3.1 Steady-State Probabilities

One can again using the technique based on evaluation of the flow equations to arrive at the steady
state probabilities p;. However, since the number of customers in the system is limited, the arrival
process is state dependent: if there are fewer than K customers in the system the arrival rate is A,

15



Figure 2.7: CTMC for the M/M/1/K queue
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Figure 2.8: Mean number of Customers in the system for M/M/1/10-queue

otherwise the arrival rate is 0. It is then straightforward to see that the steady state probabilities are

given by:

1—

pe = pop* (2.13)

where 1 < k£ < K and again p = % holds. It is interesting to note that the system is stable even for

p>1

2.3.2 Some Performance Measures
Mean number of customers in the system

The mean number of customers in the system is given by

K
(et <ot
% :op=1

(2.14)
The mean number of customers in the system is shown in figure 2.8 for varying p and for K = 10.
Please note that for this queue p can be greater than one while the queueing system remains stable.

The mean response time again can be evaluated simply using Little’s formula.

16
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Loss Probability

The loss probability is simply the probability that an arriving customer finds the system full, i.e. the
loss probability is given as px with
P pE+! ) 1
Pross *— PK — { L=pftt! 7 ;é (215)

1 . —
K+ b=l

For the case of 10 servers the loss probability for varying p is shown in figure 2.9

In section 2.1 we have considered the problem of dimensioning a router’s buffer such that cus-
tomers are lost only with a small probability and used the M/M/1 queue as an approximation, where
an M/M/1/K queue with unknown K may be more appropriate. However, it is not possible to solve
equation 2.15 algebraically for K when pr,ss is given (at least if no special functions like LambertW

[1] are used).

2.4 A comparison of different Queueing Systems

In this section we want to compare three different systems in terms of mean response time (mean
delay) vs. offered load: a single M/M/1 server with the service rate mu, a M/M/m system and a
system where m queues of M/M/1 type with service rate x are in parallel, such that every customer
enters each system with the same probability.

The answer to this question can give some hints on proper decisions in scenarios like the follow-
ing: given a computer with a processor of type X and given a set of users with long-running number
cruncher programs. These users are all angry because they need to wait so long for their results. So

the management decides that the computer should be upgraded. There are three possible options:

e buy n — 1 additional processors of type X and plug these into the single machine, thus yielding

a multiprocessor computer

e buy a new processor of type Y, which is n times stronger than processor X and replacing it, and
let all users work on that machine

e provide each user with a separate machine carrying a processor of type X, without allowing

other users to work on this machine

17
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Figure 2.10: Mean Response Times for three different systems

We show that the second solution yields the best results (smallest mean delays), followed by the first
solution, while the last one is the worst solution. The first system corresponds to an M/M/m system,
where each server has the service rate p and the arrival rate to the system is A. The second system
corresponds to an M/M/1 system with arrival rate A and service rate m - 4. And, from the view of a
single user, the last system corresponds to an M/M/ 1 system with arrival rate A/m and service rate
. The mean response times for m = 10 and p = 2 are for varying A shown in figure 2.10.

An intuitive explanation for the behaviour of the systems is the following: in the case of 10 parallel
M/M/1 queues there is always a nonzero probability that some servers have many customers in their
queues while other servers are idle. In contrast to that, in the M/M/m case this cannot happen. In
addition to that, the fat single server is especially for lighter loads better than the M/M/10 system,
since if there are only & < 10 customers in the system the M/M/10 system has a smaller overall

service rate k- u, while in the fat server all customers are served with the full service rate of 10- ¢4 = 20



